5 research outputs found

    Local Model Checking Algorithm Based on Mu-calculus with Partial Orders

    Get PDF
    The propositionalμ-calculus can be divided into two categories, global model checking algorithm and local model checking algorithm. Both of them aim at reducing time complexity and space complexity effectively. This paper analyzes the computing process of alternating fixpoint nested in detail and designs an efficient local model checking algorithm based on the propositional μ-calculus by a group of partial ordered relation, and its time complexity is O(d2(dn)d/2+2) (d is the depth of fixpoint nesting,  is the maximum of number of nodes), space complexity is O(d(dn)d/2). As far as we know, up till now, the best local model checking algorithm whose index of time complexity is d. In this paper, the index for time complexity of this algorithm is reduced from d to d/2. It is more efficient than algorithms of previous research

    Staphylococcus intermedius Produces a Functional agr Autoinducing Peptide Containing a Cyclic Lactone

    No full text
    The agr system is a global regulator of accessory functions in staphylococci, including genes encoding exoproteins involved in virulence. The agr locus contains a two-component signal transduction module that is activated by an autoinducing peptide (AIP) encoded within the agr locus and is conserved throughout the genus. The AIP has an unusual partially cyclic structure that is essential for function and that, in all but one case, involves an internal thiolactone bond between a conserved cysteine and the C-terminal carboxyl group. The exceptional case is a strain of Staphylococcus intermedius that has a serine in place of the conserved cysteine. We demonstrate here that the S. intermedius AIP is processed by the S. intermedius AgrB protein to generate a cyclic lactone, that it is an autoinducer as well as a cross-inhibitor, and that all of five other S. intermedius strains examined also produce serine-containing AIPs
    corecore